Comment utiliser la fonction ASINH dans Excel
Description et Syntaxe
La fonction ASINH, qui correspond à l’arc sinus hyperbolique, est utilisée pour déterminer l’inverse du sinus hyperbolique d’un nombre. Elle est fréquemment employée dans les secteurs tels que l’ingénierie, la physique ou la finance, pour des calculs impliquant des modèles exponentiels ou logarithmiques.
Dans Excel, l’inverse du sinus hyperbolique est calculé à l’aide de la fonction ASINH
. Sa syntaxe se présente comme suit :
=ASINH(nombre)
Le paramètre nombre
est le nombre pour lequel l’arc sinus hyperbolique doit être calculé.
Exemple d’Utilisation Basique
Par exemple, pour calculer l’arc sinus hyperbolique de 1, vous entrerez la formule suivante dans une cellule Excel :
=ASINH(1)
Cela vous donnera un résultat d’environ 0.88137.
Applications Pratiques
Voici deux exemples montrant comment la fonction ASINH peut être appliquée dans des contextes réels.
Exemple 1: Analyse de Croissance Exponentielle
Dans le domaine financier, la fonction ASINH est utile pour modéliser la croissance exponentielle des investissements. Imaginons un investissement initial de 1000 € qui augmente jusqu’à 1500 € après 5 ans.
- Le taux de croissance x peut alors être estimé en partant du principe que : SINH(x) = 1.5 (car 1500/1000 = 1.5).
- Pour déterminer x, on utilise la fonction
ASINH
:
=ASINH(1.5)
Cette formule permettra de calculer une estimation du taux de croissance x.
Exemple 2: Résolution de Problèmes de Physique
Dans des problématiques physiques impliquant des mouvements où une forme de résistance ou de force suit une fonction hyperbolique, la fonction ASINH peut aussi être utile. Supposons qu’un objet en mouvement subit une accélération proportionnelle à SINH(x), où x représente la distance parcourue.
- Pour déterminer la distance à laquelle l’accélération observée est maximale pour x = 3, la fonction ASINH est utilisée :
=ASINH(3)
Cette commande calcule l’inverse du sinus hyperbolique de 3, fournissant des informations cruciales sur la distance où l’accélération est maximale.
Conclusion
La fonction ASINH est extrêmement utile dans une variété de contextes professionnels et académiques pour l’analyse de données ou la modélisation de phénomènes utilisant des fonctions hyperboliques. Grâce à Excel et Google Sheets, son utilisation permet de réaliser aisément des calculs complexes.
Plus d'infoRmation: https://suppoRt.micRosoft.com/fR-fR/office/asinh-fonction-4e00475a-067a-43cf-926a-765b0249717c